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ABSTRACT 

Le Provost, C. and Verron, J., 1987. Wind-driven ocean circulation transition to barotropic 
instability. Dyn. Atmos. Oceans, 11: 175-201. 

This article deals with the ocean circulation driven by steady zonal winds, and damped by 
bottom and biharmonic friction, when represented by the simple barotropic vorticity equa- 
tion. A double gyre antisymmetrical wind stress pattern in a square basin is considered. Wind 
forcing and dissipation parameters are chosen within the ranges of what has been used in 
previous studies. The flow characteristics for both steady and unsteady situations are 
tentatively described as functions of model external parameters through the analysis of a 
large set of numerical experiments. Functional relations are derived for the mid-latitude jet 
parameters (length, width and transport) on the basis of scaling arguments. With the 
diagrams established for these quantities in forcing and dissipation parameter space, these 
relations allow quantitative predictions of model response to a wide range of parameter 
choices to be made. The transition to barotropic instability is interpreted by analysing and 
comparing the spin-up phase of different numerical experiments leading either to stable or 
unstable solutions. Two major types of destabilization are identified, namely through 
meandering of the mid-latitude eastward jet and Rossby wave radiation from the westward 
return flow. The characteristics of the flows are shown to be highly sensitive to the external 
parameter changes. Competition between eddy kinetic energy level and eastward jet extension 
appears to constitute the key point of this class of solutions, controlling in particular the 
intensity of transport in the inner gyres, driven by the eddy field on the two sides of the 
mid-basin jet, in a very similar manner to that of the more complex multilayered EGCMs. 

1. INTRODUCTION 

A review of  the  l i t e ra ture  c o n c e r n i n g  the  so lu t ions  of  the  b a r o t r o p i c  
vor t i c i ty  equa t ion ,  in the  con t ex t  o f  genera l  o c e a n  c i r cu la t ion  d r iven  b y  
s t eady  zona l  winds ,  shows  tha t  re la t ive ly  l i t t le  has  b e e n  wr i t t en  in this 
d o m a i n  s ince B r y a n  (1963), Veron i s  (1966a,b)  a n d  B l a n d f o r d  (1971). T h e s e  
au tho r s  used  n u m e r i c a l  inves t iga t ions  to  ex t end  to  h ighly  n o n - l i n e a r  s i tua-  
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tions the analytical results obtained, following the pioneering work of 
Sverdrup (1947), Stommel (1948) and Munk (1950), by a large number of 
authors including Charney (1955), Morgan (1956), Carrier and Robinson 
(1962), Moore (1963), Stewart (1964), Veronis (1964), Niiler (1966), Holland 
(1967) to mention but a few. Indeed, attention quickly focussed on the 
baroclinic General Circulation Models (GCMs) and the multilayer Eddy 
Resolving General Circulation Models (EGCMs). New insights have been 
obtained from these more complex models in terms of our understanding of 
the interactions occurring in mid-latitude ocean basins, which stand in 
contrast to the classical steady or quasi-steady wind driven circulation 
theories previously cited. 

However, given the difficulties in analysing the physics of these EGCM 
results under different model physical assumptions and parameter ranges, 
several authors have recently reconsidered the simpler barotropic wind 
driven problem, and analysed the energy budgets and vorticity balances over 
regions of the wind driven gyres: Harrison and Stalos (1982) have taken a 
fresh look at the Veronis (1966) non-linear calculations with bottom friction 
damping; Marshall (1984) has shown how the barotropic instability of a jet. 
separating counter-rotating gyres, transfers from one gyre to the other the 
vorticity required to maintain a statistically steady state. Brning (1986) has 
investigated the case where lateral viscosity is the dominant factor of 
dissipation. The present work is of the same ilk, but focusses on the two gyre 
problem, steady and unsteady, over a range of parameters corresponding to 
realistic basin sizes and wind forcing, and low dissipation rates. 

The aim of this study is to investigate the barotropic response of a square 
ocean driven by a steady double gyre antisymmetrical wind pattern, using a 
large set of numerical experiments. Attention is focussed on some major 
characteristics of the flows such as the eastward extension, width and 
transport of the mid-latitude jet, and their dependence on the controlling 
parameters, forcing and dissipation. Of particular interest is the transition 
from stable to barotropically unstable solutions. 

Although the experiments reported are all barotropic, they are very 
convenient for analysis and rationalization, and this can be usefully applied 
to the understanding of the upper layer dynamics of multi-layered QG 
models, by allowing the study of the barotropic instability properties of the 
flows and the vorticity transfer mechanisms from one gyre to the other 
independently of the baroclinicity. Section 2 provides a brief review of the 
model formulation and controlling parameters, and the characteristics of the 
numerical model used. In section 3, the controlling parameter space, which 
may be considered as relevant to the ocean, is quantitatively specified. The 
set of steady solutions is presented and analysed in section 4, with a 
rationalization of the jet extension and transport. Transition to barotropic 
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instability is clarified in section 5 through examination of the spin-up in 
several experiments which led either to steady or unsteady solutions. The 
essential features of the unstable solutions are then briefly presented, and 
the role of lateral friction on these flows is illustrated in section 6. 

2. FORMULATION 

The classical, fundamental, barotropic vorticity equation (BVE), derived 
for a wind-driven ocean in a closed basin of constant depth D, is 

a/at(l) + J( +,l) + & - at,b/ikc = l/D - curl T + Du + Df (1) 

where l is the vorticity and J/ the streamfunction. The vertically averaged 
velocity components (u, u) are given by u = - iZl#/ay and u = a#/&~. 
Circulations are induced by the surface wind stress, r, and controlled by 
lateral (Du) and bottom (Of) dissipation processes. By considering an 
Ekman bottom layer, Df can be expressed as a simple linear form 

Df= -KS (2) 

where ru = l/K is the bottom friction .damping timescale. For lateral 
friction, the constant eddy viscosity hypothesis leads to the Laplacian 
formulation 

Du, = AA{ (3) 

which was used in early work (Munk, 1950; Bryan, 1963). However, results 
from EGCM investigations have shown the value of higher order viscosity 
which is more selective in terms of modelling the dissipation of enstrophy at 
higher wave numbers (Chamey, 1971; Holland, 1978). The biharmonic 
formulation is thus commonly used in EGCM studies 

Du, = -A4v4{ (4 

It is convenient to discuss the problem in non-dimensional terms. In the 
following section, the basin geometry is a square box of typical size L, and 
the wind field, a simplified two gyre antisymmetrical pattern 

i 

7. = -To/p - COS(27r~/L) 

ru = 0 (5) 

A typical scale for the velocity is given by the Sverdrup balance 

U = 2mr,/pD& L (6) 

A characteristic timescale is T = (&L)-‘, and can be related to the time- 
scale of the fastest barotropic Rossby wave crossing the basin. 
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The classical non-dimensional numbers are introduced 

R = 21rro/PDflo2L 3 Rossby number 

E f =  K / f l o L  Vertical Ekman number 

E v  1 = A l t o  L3 Horizontal Ekman number 

EV 2 = A4/fl0 L5 Biharmonic Ekman number 

The non-dimensional form for eq. 1 is then 

8 /8 t ' (~")  + R . J (  ~b', ~ ' )  + 8 / 8 x ' ( ~ ' )  

= - s i n  2~ry' + EvlV4#  ' -  EozV6#" + E f v Z q /  (7) 

From these numbers, the following parameters can be derived 

6i = R 1/2, 8 f  = E f ,  801 = E o ] / 3 ,  ~ V  2 = Eo12/5 

They characterize the western boundary layer scales. A characteristic width 
of the western boundary current may be associated with each dominant  
process 

inertial effect (Fofonoff, 1954) : Wi = 8 i .  L 

bottom friction (Stommel, 1948): W f  = 8 f  . L 

lateral friction (Munk, 1950): Wv~ = 8v I • L (8) 

biharmonic friction (Holland, 1978): Wv 2 = 6 v  2 . L 

The boundary conditions play a critical role in model solutions. For single 
gyre cases Blandford (1971) has shown how the same set of parameters may 
lead either to steady flows, with western and northern boundary currents, or 
to unsteady flows, with a western boundary current and eddies in the 
northwest corner, depending on whether a slip or no-slip condition is 
applied along the boundaries. The physical relevance of such conditions is 
questionable, although most of the recent EGCM have used slip conditions. 
The question was addressed recently, for example, by Marshall (1984) when 
he introduced an unconventional boundary condition on t he  vorticity gradi- 
ent ensuring no net dissipation of vorticity along the wails. As  we want to 
contribute here to rationalize classical EGCM results, we follow usual 
EGCM practice and take as boundary conditions in the following 

~d = 0, ~2/~/,/2(~y) = 0, ~4/~K/4(~)  = 0 (9) 

Equation 7 is integrated numerically using a standard finite difference 
model. Second order difference approximations are used for both space and 
time derivatives: the vorticity equation is leap-frogged forward in time, the 
jacobian is represented by central differences in time and Arakawa's (1966) 
formulation in space. Bottom friction is evaluated through a semi-implicit 
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scheme, averaging the values at the preceding and succeeding time levels. 
Laplacian terms are calculated by following a classical five point  procedure. 
The finite difference version of the Poisson equation, enabling ~k to be 
computed from ~ at each time step, is solved by a FFT  method involving 
cyclic reduction. In every case the grid scale is chosen in such a way as to 
resolve the western inertial boundary current (WBC) and the mid-latitude jet 
(at least 3 points in the WBC, which is a minimum, knowing that the results 
can be very sensitive to resolution). 

3. PARAMETER RANGE UNDER INVESTIGATION 

When addressing the problem of the Gulf Stream system, and the 
mid-latitude wind-driven circulations at the scale of the Nor th  Atlantic, we 
have to consider horizontal scales of the order of several thousand kilome- 
ters; in general, we used a square basin 2000 km or 4000 km in width. 
Depending on the way the problem was considered, depth was either 1000 
m, corresponding to the dynamics of the upper ocean, or 5000 m for total 
barotropic flow. In so far as vorticity transfer is concerned, Harrison (1982) 
has argued that the upper layer dynamics, as predicted from the most recent 
multilayer EGCM experiments, are the same as for the BVE with domain 
depth equal to the previously mentioned upper layer depth almost every- 
where. As pointed out earlier, the study of the BVE is thus of particular 
relevance to gaining an understanding of the upper layer dynamics in these 
more complex experiments. 

Over the North Atlantic, the mean wind stress is of the order of 1 dyne 
cm -2 (i.e. 0.1 N m -2) and can vary by as much as 5 dynes cm -2 over a 
month.  Consequently, if the planetary vorticity gradient is taken to be 
t0  = 2 . 1 0  -11 m -1 S -1,  a typical 8i range is from 0.5 • 1 0  - 2  ( ' r  0 = 0.1 N m - 2  

assuming L = 4000 km, D = 1000 m) to 3.13- 10 -2 (~0 = 0.5 N m -2 assum- 
ing L = 2000 km, D = 1000 m) (see Fig. 1). 

It is more difficult to define the range of parameters relevant to the ocean 
for 8f  and 80 because the frictional parameterizations are not, as yet, fully 
justified. Although subject to uncertainties, the oceanic values for za --- 1/K 
must surely be of the order or higher than 100 days. In Fig. 1, where the 
correspondence between 8f  and the bot tom friction timescale, ~a, is given 
for different basin sizes, the oceanic flows appear to be strongly inertially 
controlled for realistic range of forcing parameters. 

The lateral friction timescale has to be characterised differently because it 
depends on the scale of motion under consideration. Figure 2 shows such 
timescales for three different values of each possible parameterization 
(Laplacian and biharmonic). In both cases, the damping timescales for the 
largest scales of motion are very large. The dynamics of these largest scales 
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Fig. 1. Location of  the complete  set of  experiments in the (a i ,  a f )  parameter space, and 
scaling relations between 8i ,  a f  and the physical  quantities ~'0 and ra for various (L ,  D )  
domains.  (a) L x L = 4000 km x 4000 km, D = 5000 m. (b) L x L = 4000  km x 4000 km, 
D = 1000 m. (c) L x L = 2000 km x 2000 kin, D = 5000 m, (d) L x L = 2000 km x 2000 km, 
D = 1 0 0 0  m. (e) L X L = 2000 k m x  2000 km. (f) L x L = 4000 k m x 4 0 0 0  km. 
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Fig. 2. Characteristic lateral friction timescale versus wavelength for several values of  A 4 (m 4 
s -  l )  or A coeff icient  (m 2 s -  1). 



181 

may therefore be taken to be quasi-inviscid. Consequently, under steady 
flow regimes the parameter 801 (or 802) will presumably not control the 
general circulation to any great extent (in a context of slip boundary 
conditions). However, this will no longer hold true for the unsteady cases 
because the flow instabilities will now develop eddies at the mesoscale which 
can be strongly affected by the dissipation process at the gridscale, where 
the enstrophy cascade modelling may be critical. Thus, we can expect the 
parameters 8o 1 and 802 to influence the general (mean and eddying) 
circulation in such unsteady situations, in contrast with the steady flow 
cases. 

4. RANGE OF PARAMETERS LEADING TO STEADY FLOWS 

Veronis (1966a,b) has studied the single gyre problem intensively, and 
Harrison and Stalos (1982) have recently reconsidered this problem and 
presented some double gyre cases. In the limit of very weak (linear) flows 
(R ~ 0 ) ,  the solution is similar to the Stommel (1948) solution. When 
inertial effects are increased, or damping is decreased (i.e. the ratio 8i/8f 
goes up), the solution changes greatly as non-linear effects become more 
important. Let us look in greater detail at the antisymmetrical double gyre 
case, which differs from the single one by the presence of a mid-basin free 
jet instead of a northern boundary layer. 

A large number of experiments were carried out within the parameter 
range given in Table I. The distribution of these experiments in the (8i, 8f)  
parameter space is shown in Fig. 1. All the experiments started from an 
initial state of rest, and computations were performed until steady circula- 
tion was reached. The duration of the integration generally needed to be 
around three times the bottom friction timescale. 

Some typical steady flow patterns are presented in Figs. 3 and 4. This set 
of experiments illustrates to some extent the similarity between the well- 
known one-gyre case and the two-gyre case under investigation here. As the 
damping coefficient is reduced, the solution evolves from a quasi-linear 
Stommel-type solution (Fig. 3-1) to strongly non-linear inertially-dominated 
flows (Fig. 3-9). In Fig. 3-1, the Sverdrup dynamics regime dominates most 
of t he  basin. The slight asymmetry within each gyre is due to a weak 
boundary current advection, towards the zero wind stress curl latitude, of 
excess negative (positive) relative vorticity which is not damped rapidly 
enough within the WBC flowing northward (southward). The particles 
moving northward or southward along this side have exactly the same 
magnitude of vorticity in the southern and northern gyre. Consequently their 
vorticities cancel out, when they meet one another along the zero wind curl 
line. The other particles retain their vorticity when leaving the vicinity of the 
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TABLE I 

External parameters of the experiments discussed in this study 

Experiment r 0 x 10-1 K × 10-1 A 4 x 109 8i × 10-- 2 6f × 10 -2 
Nm-2 s-~ m 4 s - I  

1 20 9.24 8 2.8 2.31 
2 20 6.16 1 2.8 1.54 
3 20 4.64 8 2.8 1.16 
4 unst. 20 2.32 8 2.8 0.58 
5 5 9.24 1 1.4 2.31 
6 5 5.8 1 1.4 1.45 
7 5 4.64 1 1.4 1.16 
8 5 3.84 1 1.4 0.96 
9 5 3.08 1 1.4 0.77 

10 5 2.32 1 1.4 0.58 
11 unst. 5 1.2 1 1.4 0.30 
12 1.6 3.2 1 0.8 0.8 
13 4.04 3.2 1 1.26 0.8 
14 7.1 3.2 1 1.67 0.8 
15 11.34 3.2 1 2.11 0.8 
16 4.5 6.4 1 1.33 1.6 
17 11.34 6.4 1 2.11 1.6 
18 19.53 6.4 1 2.11 1.6 
19 7.02 9.6 1 2.77 1.6 
20 17.88 9.6 1 1.66 2.4 
21 30.84 9.6 1 2.65 2.4 
22 3 1.8 1 3.48 2.4 
23 unst. 3 0.8 0.1 1.09 0.23 
24 unst. 3 0.8 1 1.09 0.23 
25 unst. 3 0.8 10 1.09 0.23 
26 1 2 0.1 0.63 0.50 
27 unst. 1 0.8 0.05 0.63 0.23 
28 unst. 0.9 1 0.05 0.59 0.27 
29 20 20 8 2.8 5 

coast .  This  expla ins  w h y  they  unde rgo  a s o u t h w a r d  ( n o r t h w a r d )  d isp lace-  
m e n t  be fo re  jo in ing  the  Sverdrup  flow. As  the d a m p i n g  is decreased ,  the  
iner t ia  of  the f low is a u g m e n t e d ,  leading  to the  f o r m a t i o n  of  a zona l  
m i d - b a s i n  jet ,  p e n e t r a t i n g  eas tward .  S imul taneous ly ,  the excess of  vor t i c i ty  
ca r r ied  b y  the j e t  p roduces  r e tu rn  f lows which  are  c lear ly  v isua l ized  in Fig. 
3-7, -8, -9. M o v i n g  s o u t h w a r d  (nor thward) ,  these par t ic les  lose their  nega t ive  
(posi t ive)  re la t ive  vort ic i ty .  The i r  iner t ia  m a k e s  t h e m  o v e r s h o o t  the  zero  
vor t ic i ty  pos i t i on  a n d  acqui re  s o m e  pos i t ive  (negat ive)  vor t ic i ty  b y  go ing  too  
fa r  sou th  (nor th) .  Th is  vor t ic i ty  ga in  (see Fig. 4) leads  to  a t ight  e a s t w a r d  
re tu rn  of  the  par t ic les  which  f inal ly end  up  in the  S v e r d r u p  flow. T h e s e  
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Fig. 3. Stream_function pattern for some steady flows and different (8i, ~f) values: 1- 
experiment 19 (1.65, 2.4), 2- experiment 20 (2.65, 2.4), 3- experiment 21 (3.48, 2.4), 4- 
experiment 16 (1.33, 1.6), 5- experiment 17 (2.11, 1.6), 6- experiment 18 (2.77, 1.6), 7- 
experiment 12 (0.80, 0.8), 8- experiment 13 (1.26, 0.8), 9- experiment 14 (1.67, 0.8). 

characteristics are much  more  p ronounced  when b o t t o m  damping  is weaker. 
Moreover,  in the limit of very weak b o t t o m  damping ,  the jet  reaches the 
eastern wall and the solution tends to take on a Fofonoff - l ike  pat tern.  Note,  
however, that  Harr ison and Stalos (1982) have shown that  i t  is not  a 
Fofonoff  balance. 

The  penetra t ion length of the jet  is also related to inertial effects: for a 
given bo t tom friction coefficient, this length increases with 8i. In  fact, the jet  
seems to be of approximately  the same extent when 8i and  8 f  vary 
simultaneously within the same ratio (Fig. 5). Fur thermore ,  the width of the 
WBC and the jet  become thinner  when 8i is decreased, according to the 
non-l inear western boundary  layer theory (Pedlosky, 1979). 
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Fig. 4. Vorticity patterns under the same conditions as m Fig. 3. 

To understand the relationship between the different processes going on 
when varying the forcing (80  and damping (S f )  parameters, let us specify 
some jet dynamical quantities for which values can be determined from the 
numerical solutions: 

(1) the maximum transport in each gyre, quantified as T = ~max D given 
the fact that ~k is taken to be zero along the basin walls; 

(2) the eastward jet extension, Lj, measured from the zero line in the 
vorticity field (Fig. 4); 

(3) the transport Tj in the half jet, which is assumed to be the transport 
through each gyre: this assumption is valid for most of the stable cases; and 
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Fig. 5. Typical steady flow stream_function patterns in the (8i, 8f) parameter space. 
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8f 

(4) Uj and Vj, the zonal and meridional velocities in the main part of the 
jet, and )~j, the half jet width. 

The set of experiments listed in Table I enabled us to investigate the 
dependence of the quantifies Lj /L  and T/Ts on the external parameters ~i 
and 8f in Figs. 6 and 7 (Ts is the Sverdrup transport defined as Ts = 
2¢r~-0/Pfl0). This dependence is quite complex. The eastward jet extension is 
not strictly related to 8i/8f, as qualitatively noticed before; and the maxi- 
mum transport in the basin is strongly dependent on ~i and 8f: the T/Ts 
transport relationship reaches a minimum before increasing up to nearly 1 
when wind forcing is increased while bottom friction damping timescale is 
held constant. This has already been pointed out by Veronis (1966), and the 
present set of experiments confirms the existence of this counter intuitive 
result. 

In line with the work done by Harrison and Stalos (1982) in terms of 
single gyre dynamics, it is possible to establish some degree of functional 
dependency between the jet flow characteristics and the model parameters. 
Near the mid-latitude of the basin, along the axis of the jet, the wind stress 
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Fig. 6. Isolines of relative jet length Lj/L in the (6i, 8f) parameter space. 

curl contr ibut ion is small and may be neglected in the local jet  dynamics.  
Thus, eq. 1 reduces, under  the stationary regime, to 

uO~/Ox + vS f / ay  + flv = - K ~  (13) 

Equation 13 can be made  dimensionless relative to the jet  scales 

u '=  u/Uj; y ' =  o/Vj;  x '  = x / L j ;  y '  = y / X j ;  ~ '= ~ ' / ~ j  

A characteristic vorticity in the jet  is denoted  f~j. Thus  we obtain 

U 'a~'/Ox' + v'O~'/Oy'. ( VjLj/UjX j ) + v' .  ( fl V j L j / U j ~ j  ) 

= - ~' .  (KL j /Uj )  (14) 

Two cases may  be considered here. 
(1) If we assume a balance between the different terms that  are involved 

in the previous equation, i.e. inertia, bo t t om friction and r-effect  are all 
playing an 0(1)  role, we obtain the following relationships for the velocity 
components  and the vorticity 

Uj - KLj Vj - K X j  f~j - floXj 

A way of determining a vorticity scale in the jet  is to assume that  the bulk of 
the vorticity loss occurs in the jet, i.e. the vorticity dissipation within each 
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Fig. 7. Isolines of maximum transport (T/Ts) in the basin in the (8i, 6f) parameter space. 

half-jet is of the order  of the vorticity input  f rom the wind over each 
half-basin 

hfal K~ dx dY-- h~ 1/D'curl  Tdx  dy 
• f 

i.e. 

K ~ j L j h  j - roL /pD 

This gives a scaling for the vorticity of 

[~j - ~.oL/OKDLj)~ j 
The transport ,  Tj, can then be deduced as 

T j -  UjhjD - Ts 8f l /2(Lj /L)  1/2 6i -1 

The  relative jet  length can then be writ ten as 

Lj /L  - ( Tj/Ts )2( 6i /6f  ) 6i (15) 

(2) If we consider the highly non-l inear  domain  where the jet  is strongly 
domina ted  by its zonal inertia, the vorticity can be scaled as 

~ j -  Uj /h j  
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Fig. 8. Functional relationship between Lj/L, T/Ts, 8i and 8f. Experimental verification of 
relationship (17) and of the existence of two regimes: moderately non-linear (et=l) and 
strongly non-linear (a = 1/3), over the domain of non-linear stable solutions. 

The main equilibrium is thus within zonal advection of vorticity and its 
dissipation, on the one hand, and meridional advection of vorticity and 
fl-effect, on the other 

Uj - KLj £ j  - flo•j 

The transport, Tj, consequently takes the form 

Tj - Ts ( L j / L  )3/z( Sf/Si)3/2 8i-  1/2 

while the relative jet length becomes 

L j / L  - ( T j /Ts  )2/3~i/~ 1 3i '/3 (16) 

and the half jet width X j / L  = R 1/3 
From (15) and (16), the jet extension can be written under  the general 
relationship 

L j / L  - 8 i / 8 f [ (  Tj/Ts )2~i] ,~ (17) 

With a = 1 for a broad range of parameters where inertia and damping are 
of the same order, and a = 1 /3  in the case of highly inertial regimes. In Fig. 
8, the relationships between L j / L .  8 f /8 i  and (Tj /Ts)28i  are shown loga- 
rithmically for the set of experiments leading to steady solutions. Clearly, 
most of the data set is consistent with the preceding relations: eq. 15 is 
satisfied up to L j / L  - 0.7, and eq. 16 for L j / L  > 0.75, except in the case of 
very weak forcing. In these latter cases, part  of the flow joins the Sverdrup 
circulation directly without first going through the mid-latitude jet  (see, for 
example, Fig. 3.7) and then scaling assumptions are untrue. 
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5. RANGE OF PARAMETERS LEADING TO UNSTEADY FLOWS 

In the preceding section, it was seen that, for large 8 i / S f  ratios, the 
appropriate scaling of the vorticity in the jet was 

~ j  - U j / h j  - floXj 

This implies that the zonal jet velocity scaling is 

Uj - fl0Xj 2 

But we know that a necessary criterion for horizontal shear instability is that 
the absolute vorticity gradients cancel 

( flo - 02Uj/OY 2 ) = 0 i.e. Uj - flo~ j 2 

Thus, the jet must reach barotropic instability conditions for large 8 i / S f  
ratios. 

Moreover, it was noticed earlier that the relative transport T / T s  tends to 
increase for very small 8i. As the western boundary layer and the jet widths 
decrease with/~i, it is also to be expected that shear instability will occur for 
inertial flows with small 8i. To finderstand the way these kinds of wind 
driven flows go to unsteadiness, it is instructive to analyse the spin-up phase 
of these experiments. As stated immediately above, two cases can be 
distinguished. 

5.1. Transition to instability when decreasing the jet  width for moderately 
non-linear flow 

Several experiments were carried out for 8 i / 8 f =  2.5 (experiments 3, 10, 
15, 22, 27), and led to steady solutions except for the last one. Two of these 
are presented in Fig. 5. The final streamfunction pictures look very similar, 
except that jets grow narrower as wind stress and bottom friction are 
decreased. But these results are obtained after a spin-up phase during which 
the meridional velocity gradient in the jet is considerably increased locally; 
for very small 8i this allows the development of shear instabilities which can 
lead to fully developed unstable flows. A sequence of successive streamfunc- 
tions for such a case (experiment 27) is displayed in Fig. 9. At the beginning 
of the jet formation (Fig. 9a), the excess of vorticity is so great that two 
strong recirculating sub-gyres are induced on each side of the jet, increasing 
the transport there to significantly higher values than the Sverdrup trans- 
port, and this occurred for most of the experiments. In Fig. 10 the maximum 
transports (normalized by Ts) have been drawn versus time (normalized by 
the characteristic bottom friction timescale) to illustrate how the transport in 
the jet is temporarily enhanced during each spin-up phase by the existence 
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Fig. 9. Instantaneous streamfunction patterns for experiment 27: (a) t / ra  = 0.69, (b) t / za  = 
1.72, (c) t /ra = 2.41, (d) t /za = 3.79. (C.I. = 0.16 Ts). 

of these subgyres. As the jet increases its eastward penetration, dissipation 
inside the western boundary layer and inside the jet progressively gets rid of 
the vorticity advected from the western wall (Fig. 9b). For experiments 3, 10, 
15, and 22, after a spin-up phase of about four times the damping timescale, 
the local subgyres disappear, and a final steady flow is obtained, with a 
straight and regular jet, and northwest and southwest returning flows, as 
already described in the previous paragraph (see Fig. 5). 

But for experiment 27, as the typical width of the jet is very narrow, in 
close relationship with the inertial scale ~i, the flow becomes unstable within 
the two subgyres drifting westward at the extremity of the jet. Meanders 
appear (see Fig 9c): on the one hand, they are advected eastward by the 
flow, and on the other hand, meandering propagates westward, destabilizing 
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Fig. 10. Maximum transport as a function of time for a set of strongly non-linear experiments 
( S i / S f -  2.5). For experiment 27, the flow is fully unstable by t/~a ~ 2.4. The dashed line 
corresponds then to the mean transport value. 

most of the jet. A part  of the energy is thus transferred from the mean  flow 
to this smaller scale variability, stopping the inertial eastward zonal penetra-  
tion of the jet. This is clearly illustrated in Fig. l l a ,  which corresponds to 
the time history of the streamfunction along the latitude y = 0.505L, i.e. 
very near the axis of  the jet. At t = 2~a, the jet  reaches its max imum 
eastward extension. Its shortening occurs very abruptly. However, it takes 
about 2~-a for the flow to adjust itself to a new equilibrium. It finally 
reaches a statistically steady state with a zonal penetrat ion considerably 
reduced down to one quarter of the basin width, whereas the equivalent 
preceding steady state solutions led to jet  penetrat ion of up to 0.9L. How 
does this destabilization occur? Where do instabilities first take place? It is 
difficult to analyse the details of this phase of destabilization on experiment 
27, because it happens very abruptly. It is easier to follow these processes on 
experiments with broader jets and subgyres, i.e. with larger 8i. 

5.2. Transition to instability when increasing non linearity for strongly non 
linear flows 

Several experiments have been carried out with a constant  8i(0.014), but  
decreasing 8f, i.e. smaller and smaller bot tom friction (experiments 5-11). 
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Fig. 11. Time history diagram of the stream function along the zonal section y = 0.505L, for: 
(a) experiment 27 (C.I. = 0.06 Ts for t /za < 2, and 0.16 Ts for t/Ta > 2), (b) experiment 11 
(C.I. = 0.032Ts for t/'ra < 3, and 0.13 Ts for t /za > 3). 

All of them, except experiment 11, led to steady solutions. They are 
displayed in Fig. 5. Let us analyse in greater detail this last experiment, in 
the context of a very non-linear flow ( S i / S f =  5). 

At the beginning, the basin spin-up evolves in the same way as described 
previously: a pair of intense re, circulating subgyres develop at the extremity 
of the jet  (Fig. 12a), penetrate eastward at the mid-latitude of the basin, and 
locally increase transport up to 1.7 Ts, before slowly decreasing, because of 
vorticity dissipation within the jet. However,  as the jet  is very inertial, it 
finally crosses the whole basin before any instabilities appear. The flow 
builds up an eastern boundary  layer, and a strong westward recirculation; 
and it is in this return flow that instabilities first appear. In Fig. 12b, we 
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Fig. 12. Instantaneous streamfunction pattern for experiment 11: (a) t / ra  = 1.04, (b) t / , a  = 
2.1, (c) t / , a  = 3.3, (d) t / , a  = 4.35, (e) t / ra  = 5.3, (f) t / ra  = 6.24. (C.I. = 0.19 Ts). The 
shaded areas in Fig. 12b,c are where absolute vorticity gradients cancel. 
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have  shaded  the areas  where  the f low reaches  m a r g i n a l  s tabi l i ty ,  i.e. where  
abso lu te  vor t ic i ty  g rad ien t s  cancel  and  po ten t i a l  vor t ic i ty  deve lop  a p la teau .  
This  c lear ly  h a p p e n s  first  on ly  wi th in  the m o s t  in tense  pa r t  o f  the w e s t w a r d  
re tu rn  flow. 

I t  is necessary  to wai t  unti l  t = 3 .2 r a  to obse rve  the first  m e a n d e r i n g s  of  
the eas tward  j e t  (see Fig. 12c). Th is  is c lear ly  i l lus t ra ted  in Fig. l l b  

a 

X : L  

Fig. 13. Time history diagram of the streamfunction along the zonal section y = 0.25L for 
experiment 11. (C.I. = 0.06 Ts). The different broken lines correspond to the propagation of: 
. . . . . .  : long westward free Rossby waves, - - - - - - :  short eastward free Rossby waves, 
. . . . . .  : basin mode Rossby wave (1,2), • . . . .  : westward advection and propagation of 
barotropic instabilities. 
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corresponding to the time history of the streamfunction along the zonal 
section y -- 0.505L, near the axis of the jet. We can see that these meanders 
are advected eastward but also propagate westward to destabilize most of 
the jet, as already noticed for experiment 27. In Fig. 12c, it must be noticed 
that the shaded areas, where potential vorticity gradients cancel and develop 
absolute vorticity plateaux, are now situated on the one hand within the 
return flows, as previously, and, on the other hand, on the two sides of the 
eastward jet. This is consistent with the conclusions of Talley (1983) on the 
radiating instability of the westward jets and the confined instability of the 
eastward ones. 

This spin-up can also be followed in Fig. 13, which shows the evolution of 
the streamfunction along a y = 0.25L zonal section: during the early stages 
of the spin-up, transport grows linearly until the fast Rossby wave generated 
at the eastern wall blocks this increase; simultaneously, a short Rossby wave 
front propagates eastward, leaving in its lee a wave pattern with a period 
exactly corresponding to that of the first basin Rossby mode (Anderson and 
Gill, 1975). It can be seen from this figure that the western boundary is 
nearly stabilized at t = 1.5~'a, when the jet reaches the eastern boundary. 
The impact of the jet produces new westward fast Rossby waves that cross 
the basin and reinforce the western boundary current and the transport in 
the jet (see in Fig. l l b  and 13, between t = ~-a and 2ra).  Correlatively, 
instabilities appear on the two flanks of the return flow, and their advection 
can be followed in Fig. 13. These patterns can also be seen in the recirculat- 
ing flows in Fig. 12b,c. 

The destabilization of the jet, and its shortening then follows the same 
scenario as in experiment 27, with, however, much stronger transient Rossby 
waves generated from the extremity of the jet, and filling all the basin (Fig. 
12d,e). This is because energy levels are now much higher. The same kind of 
spin-up and destabilization occur for experiments 4 and 23, corresponding 
to the same 8i /S f  ratio, but higher and lower wind forcing, respectively. 

This set of experiments leads us to draw a qualitative frontier between 
stable and unstable flows, in the (8i, 8f) parameter space. For large 8i, this 
frontier must follow the curve 8i /8 f= 4; for smaller 8i, the domain of 
instability must be enlarged, in relation to the increase of transport observed 
in that area (see Fig. 7 and section 5.1). 

5.3. Main characteristics of the unsteady cases 

As pointed out in the preceding chapter, a 'statistically' steady state is 
reached for each unstable case after a spin-up phase of from 4 to 5"ra. From 
the observation of sequences of instantaneous streamfunction pictures like 
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those displayed in Figs. 10d and 12f, it appears that the main features of this 
class of flows are: 

(1) a barotropically unstable mid-latitude jet, meandering along the zero 
wind stress curl line, and producing occasional eddies resulting from cutting 
off these meanders; 

(2) a westward drift of these eddies after their expulsions from the jet, the 
anticyclonic ones northwards, the cyclonic ones southwards; and 

(3) a Rossby wave pattern filling all the basin with parabolic crests 
focussing on the extremity of the jet  and propagating westward, just  like free 
waves generated from a source point. 

. . . . .  

(it 

b 

Fig. 14. Mean fields for experiment 27 calculated from an average of 300 instantaneous fields 
taken over a period of 4~a. (a) mean streamfunction (C.I. = 0.16 Ts), (b) mean eddy kinetic 
energy distribution. 
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The mean transport pattern resulting from these flows is very different 
from those previously described in the steady state cases. One such example 
is presented in Fig. 14a, corresponding to experiment 27. A superposition of 
two scales of circulation iS apparent: a large-scale Sverdrup circulation and a 
smaller recirculating gyre in each half basin. These inner gyres are embedded 
in the large-scale circulation pattern and look very similar to those discussed 
by Schmitz and Holland (1982) in the upper layer of a two layer stratified 
o c e a n .  

The dynamics of these mean gyres has been analysed by Marshall (1984) 
in the context of barotropic instability only. Contrasting with the classical 
steady wind driven circulation cases, where an inertial-frictional boundary 
layer is needed to dissipate vorticity and allow the flow to return to the 
interior, equilibrium now also partly results from an internal redistribution 
of vorticity between the northern and southern gyres supplied by the eddies. 
The same was also discussed in Harrisson and Holland (1981) for a two 
layer ocean. 

Maximum transport in each half basin is considerably increased com- 
pared with the steady state solutions; for example it is 1.7 Ts in experiment 
27 and 1.86 Ts in experiment 23. 

The eddy kinetic energy is concentrated in the vicinity of the jet¢ with a 
maximum at its eastern extremity where most of the eddies are produced; it 
falls off on the two flanks of the recirculating inner gyres (Fig. I4b). The 
mean to eddy kinetic energy ratios are highly dependent on the forcing and 
dissipation conditions. In Table II, strongly marked differences are noticea- 
ble between experiments that lie close together in parameter space (experi- 
ments 27 and 28): mean transport in the subgyres varies in relation with the 
KE '  level of course, while the eastward jet extension declines as a function 
of the degree of instability. 

TABLE II 

Mean to eddy kinetic energy ratio over the basin, eastward extension of the mean jet, and 
mean transport of the inner gyres 

Two very close 
experiments 

A group of three experiments correspon- 
cling to the same forcing and bottom 
friction but increasing lateral dissipation 

Experiment No. 

28 27 23 24 25 

KE'/KE 0.23 0.54 1.08 0.85 0.58 

Lj/L 0.24 0.2 0.25 0.37 0.50 

TITs 1.11 1.6 1.86 1.8 1.4 
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It would be interesting to investigate the relationship between these 
unsteady cases more carefully, particularly the rationalization of the jet's 
eastward penetration and its eddy kinetic energy for the statistically steady 
states with reference to forcing and dissipation parameters. But this is out of 
the scope of the present paper, which is limited to the transition from steady 
to unsteady cases. 

6. R O L E  O F  L A T E R A L  F R I C T I O N  

As observed in section 3, the biharmonic friction contribution cannot be 
ignored, especially with respect to the unstable cases, because the eddy sizes 

i 

L 

~ _ _  (1 

, , '  . . . . . . . . .  '**', --'---:--S . . . . .  -',"-. " . . . . . . . .  - 
;;, - . . . . . . . . . . . . . . . . .  - - . .  , -~ ~ . .  

b 

F i g .  15. Mean streamfunction fields for (a) experiment 23 and (b) experiment 25, calculated 
from an average of a sequence of instantaneous fields over 4~-a. (C . I .  = 0 .265  Ts). 
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are small enough to become highly sensitive to the enstrophy dissipation 
modelling. 

Experiments 23, 24 and 25 illustrate how sensitive these unstable solu- 
tions are to the biharmonic friction coefficient, even in the context of slip 
boundary conditions. The forcing and bottom friction parameters are the 
same for the three experiments, but the A4 coefficient is multiplied by 10 
and 100, respectively, for experiments 24 and 25 as compared with experi- 
ment 23. The mean streamfunction patterns are displayed in Fig. 15 for 
experiment 23 and 25, while Table II contains the values of the mean to 
eddy kinetic energy ratios, the relative mean jet extension, and the relative 
mean transport for all these experiments. As expected, it can be seen that 
the increase of lateral friction is selectively acting at the smaller scales, 
reducing the tendency of the flow to develop instabilities and thus the mean 
transport in the sub-gyres. Correlatively, the flow inertias are increased and, 
consequently, so are the zonal penetration of the jet and the mean to eddy 
kinetic energy ratio. These results illustrate how substantially the preceding 
conclusions can be modified when larger values for lateral biharmonic 
friction are taken. This is even more the case when Laplacian friction is used 
(see, for example Brining (1986)). 

7. CONCLUSION 

The barotropic response of a square ocean driven by a steady double gyre 
antisymmetrical wind pattern was investigated by means of a large number 
of numerical experiments using a traditional range of external parameters 
(wind forcing and dissipation). Particular attention was paid to the major 
characteristics of the flow: eastward extension of the mid-latitude jet,  width 
of the western boundary, width of jet and the maximum transport in the 
basin. Their dependence on the forcing and dissipation parameters (8i and 
8f)  was examined, and rationalized, in the case of steady state solutions. A 
general dimensional relationship between Lj/L, T/Ts, 8i and ~f was 
established and validated by comparing it to experimental results. It shows 
the existence of different regimes :for moderately or strongly non-linear 
flows. With the help of the experimental diagrams on Lj/L and T/Ts in the 
(8i, 8f) space, arising from this study, it is possible to quantitatively predict 
these quantifies for given forcing and dissipation parameters. 

The transition to barotropic instability was investigated in the controlling 
parameter space, by analysing the spin-up for certain experiments leading 
either to steady or unsteady solutions. Two different ways of destabilization 
were analysed, either by direct narrowing of the jet in relation with low 
forcing and dissipation, or by enhancement of the flow in the jet through the 
set up of strongly non-linear situations. Two types of destabilization were 
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identified, namely through the generation and radiation of Rossby wave 
patterns on the two flanks of the westward return flows, and the meandering 
of the mid-latitude eastward jet. 

The characteristics of the quasi steady flows, for the unstable solutions, 
are highly dependent on the external parameters: the eastward extension of 
the mean jet is closely related to its level of instability, and the same holds 
for mean transport in the inner gyres. A particular set of experiments was 
included in this context to show how sensitive the solutions are to lateral 
friction parameterization. By selectively acting on the small scales, with 
harmonic or biharmonic friction, the eddy kinetic energy level of the flow 
and transport in the inner gyres can be reduced, and the length of the 
mid-latitude jet is thus increased. 

The dissipation ranges in the ocean are probably even lower than those 
used here. The present investigations thus need to be extended to very small 
8f. But it must be pointed out that these results are probably also very 
dependent on the strict antisymmetry of the wind forcing pattern used. 
Harrison and Stalos (1982) have provided some illustrations of major 
changes in the dynamical response of flows driven by significantly different 
wind forcing. This will be investigated in a future study, in relation to an 
analysis of the influence of time and space variabilities in forcing on the 
general oceanic circulation. 

ACKNOWLEDGEMENTS 

This work has been supported by CNRS and IFREMER through the 
Programme National d 'Etude de la Dynamique du Climat. The calculations 
have been made with the numerical facilities of the Centre de Calcul 
Vectoriel pour la Recherche in Palaiseau. The authors are indebted to the 
referees for helpful comments and suggestions. 

REFERENCES 

Anderson, D. and Gill, A., 1975. Spin-up of a stratified ocean with applications to upwelling. 
Deep-Sea Res,  24: 709-732. 

Azakawa, A., 1966. Computational design for long term integration of the equations of fluid 
motions. J. Comp. Phys., 1: 119-143. 

Blandford, R.R., 1971. Boundary conditions in homogeneous ocean models. Deep-Sea Res., 
18: 739-751. 

BiSning, C.W., 1986. On the influence of frictional parametrization in wind-driven ocean 
circulation models. Dyn. Atmos. Oceans, 10: 63-92. 

Bryan, K., 1963. A numerical investigation of a non-linear model of a wind-driven ocean. J. 
Atmos. Sci., 20: 549-606. 

Carrier, G.F. and Robinson, A.R., 1962. On the theory of the wind-driven ocean circulation. 
J. Fluid Mech., 12: 49-80. 

Charney, J.G., 1955. The Gulf Stream as an inertial boundary layer. Proc. Natl. Acad. Sci., 
41: 731-740. 



201 

Charney, J.G., 1971. Geostrophic turbulence. J. Atmos. Sci., 28: 1087-1097. 
Fofonoff, N.P., 1954. Steady flow in a frictionless homogeneous ocean. J. Mar. Res., 13: 

254-262. 
Harrison, D.E., 1982. On deep mean flow generation mechanisms and the abyssal, circulation 

of numerical model gyres. Dyn. Atmos. Oceans, 6: 135-152. 
Harrison, D.E. and Holland, W.R., 1981. Regional eddy vorticity transport and the equi- 

librium vorticity budgets of a numerical model ocean circulation. J. Phys. Oceanogr., 11: 
190-208. 

Harrison, D.E. and Stalos, S., 1982. On the wind driven ocean circulation. J. Mar. Res., 40: 
773-791. 

Holland, W.H., 1967. On the wind driven circulation in an ocean with bottom topography. 
Tellus, 19: 582-599. 

Holland, W.H., 1978. The role of mesoscale eddies in the general circulation of the ocean. 
Numerical experiments using a wind driven quasi-geostrophic model. J. Phys. Oceanogr., 
8: 363-392. 

Marshall, J.C., 1984. Eddy-mean flow interaction in a barotropic ocean model. Q. J. g.  
Meteorol. Soc., 110: 465: 573-590. 

Moore, D.W., 1963. Rossby waves in ocean circulation. Deep Sea Res., 25: 859-910. 
Morgan, G.W., 1956. On the wind driven ocean circulation. Tellus, 8: 301-320. 
Munk, W.H., 1950. On the wind driven ocean circulation. J. Meteorol., 7: 79-93. 
Niiler, P.P., 1966. On the theory of the wind driven ocean circulation. Deep-Sea Res., 13: 

597-606. 
Pedlosky, J., 1979. Geophysical Fluid Dynamics. Springer-Verlag, Berlin, 286 pp. 
Schmitz, W.J. and Holland, W.H., 1982. Numerical eddy resolving general circulation 

experiments: preliminary comparison with observations. J. Mar. Res., 40, 1: 15, 117. 
Stewart, R.W., 1964. The influence of friction an inertial models of oceanic circulation. Stud. 

Oceanogr., 3-9. 
Stommel, H., 1948. The westward intensification of wind driven ocean currents. Trans. Am. 

Geophys. Union, 29: 202-206. 
Sverdrup, H.U., 1947. Wind driven currents in a barotropic ocean: with application to the 

equatorial currents of the Eastern Pacific. Proc. Nat. Acad. Sci., 33: 318-326. 
Talley, L.D., 1983. Radiating barotropic instability. J. Phys. Oceanogr., 13: 972-987. 
Veronis, G., 1964. On inertially controlled flow patterns in a fl-plane ocean. Tellus, 15: 

59-66. 
Veronis, G., 1966a. Wind driven ocean circulation. Part 1: Linear theory and perturbation 

analysis. Deep Sea Res., 13: 17-29. 
Veronis, G., 1966b. Wind driven ocean circulation. Part 2: Numerical solution of the 

non-linear problem. Deep-Sea Res., 13: 31-55. 


