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Abstract--A treatment of stationary planetary flow patterns driven by source-sink distributions in 
a cylindrical tank (Stommel et al., 1958) is extended to predict flow patterns which might be expected 
under similar circumstances on a rotating sphere. Flow patterns are sketched for various source-sink 
distributions and meridional and zonal boundary conditions. 

(1) INTRODUCTION 

IN a previous paper (STOMMEL et al., 1958) we defined a regime of flow specified by 
the following elements : (a) the flow in the whole layer is steady and geostrophic 
except and only (b) at the western boundary where a narrow, intense boundary 
current is permitted to depart markedly from geostrophy, and (c) the system, which 
would otherwise be at rest, is driven by a distribution of sources and sinks of  fluid 
(this might include driving agents, such as wind, which can be expressed in terms of  
source and sink distributions). 

Such regimes can occur in a homogeneous layer of  fluid (a) of  uniform or varying 
depth on a rotating sphere (b) of  uniform or varying depth on a beta plane (c) of  
radially non-uniform depth on a rotating plane, i.e., in a cylindrical rotating tank 
with a level bottom. Predictions of  patterns of  flow deduced from the defined regime 
have been verified experimentally in the cylindrical rotating tank. It  is our purpose 
here to set forth some theoretical results with respect to circulation patterns which 
may be deduced for similar flows on a rotating sphere. Where these circulation 
patterns can be related to existing geometry and boundary conditions in the actual 
ocean, they might be taken as highly abstracted and idealized models of abyssal 
ocean circulation. Such models are, of  course, highly speculative, since we do not 
have clear cut confirmation of the existence of the flows described, but we have been 
encouraged by the success of  the rotating tank results to put forth a number of  
spherical models in order to stimulate further speculation. 

In applying this model to the abyssal layer of  the ocean, we visualize a distributed 
sink as involving a transfer of  fluid upward through the main thermocline, and a 
concentrated source as a supply of sinking, cold fluid generated in a small area at 
high latitude. 

Our justification for assuming, in these simple models, that there is a general 
upward flow of  water u of  several centimetres per day - -  at mid-depths, is the theory 
of the oceanic thermocline developed by ROBINSON and STOMMEL (1959). This theory 
treats each ocean basin as a separate entity. We will show in Part II  of  this report 
how a series of  such basins can be, in principle, connected together to form a model 
of  the abyssal circulation of the world ocean. 
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(2) THE FORMULATION OF THE EQUATIONS FOR A HOMOGENEOUS OCEAN 

Consider a globe of radius a, rotating with angular velocity ~o, covered with a 
layer of homogeneous water of  depth h. Let u be southward component of velocity, 
and v be eastward component of velocity at a point in co-latitude 0 and longitude 4,. 
(Fig. 1.). Assuming hydrostatic pressure in the vertical, small motions, and absence 
of  an external disturbing force, the linearized dynamical equations are* 

bu _ 2wv cos ~ -- g b 
bt a b~ 

by -- g b~ 
~-~ + 2wu cos ~ -- - -  - -  

a sin ~ 34, 

where ~ is the displacement of  the free surface. 

Fig. 1. Notation for co-ordinates and 
velocities. 

Fig. 2. Element of fluid for formulation 
of continuity equation. 

We must now obtain a suitable form of the continuity equation. Consider a column 
of water shown in Fig. 2. Neglecting the quantity ~ compared to h, the rate of flow 
of  water out of  the column through the vertical walls is 

~ (hua sin ~) 34, 3~ + b-~ (hva) 34, 3~ 

At the top of the column, which is of area a s sin 0 34, 3o, the free surface is rising 
at the rate b ~/bt, and also there is passage of water through the free surface (positive 
upward) of  Q (o, 4,) per unit area. (We avoid GOLDSBROUCH'S notation P (0, 4,) 
because it suggests the word precipitation, of which it is indeed negative, and also 
looks like Legendre polynomials). We shall call Q the sink function ; it represents 
a distributed sink. 

( ~ )  a 2 sin~ 80 34,. Hence the The total flux upward is therefore Q + -~ continuity 
/ 

equation is 

*We set up the same equations as GOLnsaROU6H (1933). 
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a ( h u s i n e ) +  b ( bg) b--~ ~ ( h v ) +  Q + - ~  a s i n O = O  

Let us now consider a steady circulation in a layer of  uniform depth. 

h is constant, and bu _ by _ b~ _ 0. The solution of  (1) and (2) is then 
bt bt bt 

u = --  cotan e .  __Qa 
h 

~v _ t a n a . a . b  (cos ~o .  Q) 
~4, h ~(cos~) 

~-f-~ = 2oJ ~h cos~ 0 Q 

An alternate form of  (4) : 

by a 1 b 
~4~ -- h cos ~ ~o (Q c°s2 ~) 

(1.2) 

In this case 

(1.3) 

(1.4) 

(1.5) 

a I ] = ~  c o s e - - - 2 s i n O . Q  (1.6) 
be 

(3) EVAPORATION --  PRECIPITATION HEMISPHERES WITHOUT MERIDIONAL 
BOUNDARIES 

Consider the globe with no boundaries (coasts). The sink function Q (a, 4,) is 
taken as 

Q = Qo sin 4, sin o (2.1) 

This form of  source-sink distribution corresponds to dividing the sphere into a 
western hemisphere (rr ~< 4' < 2rr) in which Q is negative (precipitation, source) and 
an eastern hemisphere (0 ~< 4, < 7r) in which Q is positive (evaporation, sink). 

The expressions for u, v, ~ are as follows : 

u = ~ sin 4, cos o (2.2) 

by __ Qo a [3 cos ~ ~ - 2] sin ~ (2.3) 
b$ h 

~ _ 2~'a2 Qo cos 2 o sin ~ sin 4, (2.4) 
b4, gh 

or when integrated 

u = - ~  sin 4, cos o (2.5) 

_~_ g dG 
v = [2 -- 3 cos 2 ~] cos 4, + 2wa cos ~/-d~ (2.6) 

2omz Q0 cos ~ ~ sin ~ COS $ + G (~) (2.7) 
{~ = gh 
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where G (o) is an arbitrary function physically associated with an arbitrary zonal 
flow superposable as an initial condition in the general solution. 

The distribution of  the sink-function and contours of disturbed height ~, or simply 
isobars, are shown in Fig. 3, for G (8) = 0. 

N 

5#'/2 ,h=O ~'/2 er 3#'/2 

' .. - - - ' - F ' - - - .  . f - i - " - - - .  I '~°° 
I / " ,,"-I':." ", ! / :'-]'~ ", I 

t L I " / ~ H 

',, C_I  / f QI_ / 

S 
Fig. 3. C i rcu la t ion  pat tern fo r  Q = Q0 sin !6 sin O wi th  no mer id iona l  boundaries.  

Four self-contained circulation cells exist, separated by the meridian ~ = 0, ~r 
and by the equator o =- rr/2. The flow is equatorward in the source hemisphere, 
poleward in the sink hemisphere. The geostrophic planetary flow field is divergent 
because the Coriolis parameter 2(o cos 8 is a function of latitude. Although all flow 
is parallel to the isobars, the transport between isobars must vary with latitude. 
The fields of  motion which we derive by the method of GOLDSBROUGH are precisely 
those whose planetary-geostrophic convergence matches the distributed sink function 
everywhere. 

If  we choose the ' s t e p '  distribution corresponding to Q = q- Qo on the sink 
hemisphere (0 ~< ~ < rr) and Q = - Qo on the source hemisphere (rr ~< ff < 2rr), 
the solutions of (1.5) and (1.6) are 

_ 2 o~a2 Q________o cos ~ 8.  $ + Gx (o), (0 ~< ~ < zr) 
gh 

_ 2,oa~ Qo c o :  8.  $ + G~ (8), (,~ ~< ~ < 2,~) (2.8) 
gh 

v -- 2Qo a sin o $ + g dG1 (0 <~ ¢ < rr) 
h " 2o~a cos o ~ - '  

_ 2Q0 a sin o.  ¢ + g dG2 (r; ~< ¢ < 2rr) (2.9) 
h 2oJa cos o do ' 

where G1 and G2 must be selected so as to provide continuity of g at the boundary 
between the two hemispheres. 

A simple, symmetrical flow pattern analogous to that of  Fig. 3 is obtained if we 
• r 3rr 

take G1 and G= such as to make ~ = 0 around the great circle meridian ~ = -~, -~-. 
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The result is : 

~ = 2o~a~ Q0 cos2 ~ (~ ~r) (0 ~< ~ < ~r) 
gh " 2 '  

--2~°a2gh Qo cos2~ • ( ~  - 4 ) ,  (rr ~ < 2~r) (2.10) 

2Q° a sin O (2 - ~) (0 ~ ~ < ~r) v -- h " ' 

-- 2Q~a sinO. (~ - ~ ) ,  (~" ~ ~ < 2rr) (2.11) 

and u is given by (1.3) with appropriate substitution of q-Q0 for Q. The circulation 
pattern is sketched in Fig. 4. There is a singularity at the poles where the velocity u 
is infinite. Since these conditions are contradictory with the original requirement 
that the motions be small, we can expect that a higher order dynamical system will 
be required to explain the detailed configuration at the poles themselves. This points 
up some of the difficulties which actually could occur in applying the GOLDSBROUGH 
method to a simple experimental or geophysical system. These difficulties can be 
avoided, of course, if we are able to use certain simple forms of sink function such 

~" L I " 
/ \ / 8~0  

\ / \ H / \ / \ / 

5 ~ / 2  

Fig. 4. 

Source Sink 

I / 
/ 

Source ~"/2 

/ \ \ 
/ L N /-/ \ ,/ , / \ 

) 7/" 

,fi = 0 ~ ' /2  ~ :5 ~-/2 

Circulat ion pat tern  for Q = + Qo, (0 ~ 4, < ~),  and  Q = - Q0, (rr ,~ 4' < 2*0, with no  
meridional boundaries. 

as that employed in Fig. 3. To indicate in Fig. 4 the need for an additional higher 
order regime at the poles, we resort to a simple symbolic device: We close the isobars 
in a narrow boundary region at the poles as shown in Fig. 4, so that we do not represent 
a mathematical discontinuity in pressure, and we draw a heavy arrow at the top to 
indicate the direction of the singular flow over the poles in this region. The arrows 
over the lows and highs are both in the same direction, the projection makes them 
look different. On the sphere, looking at the North Pole, the picture looks something 
like that shown in Fig. 5. 

For simplicity of expression, let us call this little intense stream, the ' polar jet, '  
or ' polar pinch.' 

The polar jet, perhaps surprisingly at first glance, flows from the sink hemisphere 
to the source hemisphere. 
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The transport of water in the polar jet must be 

~ (~max - -  ~min) 

From equation (2.8) we find 
2ore = 

~max-  ~min -  rrOo gh 

(2.12) 

(2.13) 

Sink Source 

Fig. 5. Circulation pattern of Fig. 4 as seen looking down on the North Pole. 

Thus the transport of both the polar jets into the source hemisphere is 

2~ra~ Qo (2.14) 

The total integrated source flowing into the source hemisphere is 

2~ra~ Qo. 

Therefore, in the steady state there must be a relatively massive flow, 4zra 2 Qo, flowing 
geostrophically from the source hemisphere into the sink hemisphere across the 
great circle - -  meridian - -  bounding the two hemispheres. We may verify this by the 
following direct calculation: From (2.11) we have for the total zonal flux, F, of material 
out of the source hemisphere along the great circle meridian ~b ---- 0, ~r : 

F = 2~ra Q0 sin o. 

The total zonal flow out of  the source hemisphere is then 

f~2~ra'QosinO do = 4~ra~ Q0, 

in agreement with the value calculated above from the sum of the transport in the 
polar jet and the distributed source. 

(It might be noted that a somewhat different flow pattern with similar polar jet 
and zonal transports is obtained if one selects G 1 and G= in (2.8) in such a way as to 
make g = 0 along the great circle meridian ff = 0, zr). 

(3) BASINS BOUNDED BY MERIDIANS 

We now proceed to discuss the case where an ocean basin is bounded by meridians 
~x and 4~= extending all the way to the poles. Here we develop the pressure pattern 
from the eastern boundary ~b z where, of  course, there can be no zonal transport, 
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so we take 4, = 4,3 as an isobar : ~ = 0 .  As before, we  require geostrophic flow in 
the interior, but  we shall now satisfy continuity requirements by allowing departure 
f rom geostrophy in a western boundary  current. Our  justification for the treatment 
carried out  below rests on the success with which the same method predicts and 
describes similar flow patterns in a rotating cylindrical tank (STOMMEL et  aL, 1958). 

As an initial illustration we take a uniformly distributed sink Q0 over the entire 
surface and balance this by a concentrated source So at the pole, considering the 
basin north  o f  the equator  for simplicity (Fig. 6). Since the surface area o f  the sector 
is a ~ ( 4 , ~ -  4,0, we take the concentrated source at the north pole as 
So = Qo aS (4,3 - 4,1). The geostrophic velocities and surface isobars are given by : 

u - -  Q0 a cotan 
h 

2Qo a sin ~ .  (4,~ - 4,) v -  h 

_ 2oJa~ Q o cos 2 ~.  (4, _ ff~) (3.1) 
gh 

The pattern o f  the isobars is shown in Fig. 6. (There is a singularity at the pole 
similar to that encountered in Section 2). 

1 
Fig. 7. Notation for evaluating strength of 
western boundary current Tee (0) by con- 
sideration of continuity of mass flow in a 

sector. 

Fig. 6. Circulation pattern in meridionally 
bounded ocean with concentrated source S O 
at North Pole and a uniformly distributed 

sink Qo, such that S O = Qo a2 (¢2 - ~1). 

This flow does not satisfy boundary  conditions at 4, = 4,1, and, following the 
procedure used by (STOMMEL, et al., 1958) we introduce symbolicaly a western 
boundary  current T w (o~) shown positive southward by the heavy arrow in Fig. 7. 

Consider a section of  the ocean (Fig. 7) bounded  by 4'1, 4,2, and o~. The total outward 
flux o f  mass from port ions o f  the basin so bounded consists o f  four parts : 

1. The western boundary  current T w (~). 
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. 

. 

current 

f ~'2ahu sin ~ d4. 

4. The flux -- So from any concentrated source present in the section. 
In the stationary state these must add up to zero, hence 

Tw (~) = -- f *'ahu sin ~ dr -- f ~  '2Qa2 sin ~ dO dr + So (3.2) 
J¢~1 JO J ¢ i  

Evaluating equation 3.2 in the light of 3.1, we obtain for case of  Fig. 6 : 

Tw = 2Q0 a 2 (42 - 40  c o s "  (3.3) 

= 2S0 cos ~. 

Thus in the neighbourhood of  the pole the transport in the western boundary current, 
Tw(0) = 2Q0 a 2 (63 - 6~) = 2So, is twice the transport associated with the concentrated 
source alone, and, as in the cylindrical case developed by STOMMEL et al. (1958) a 
large volume of water is continually being recirculated in such a steady-state system. 

Equation (3.3) however, reveals a very interesting difference between the spherical 
and the cylindrical geometries. Where, in the cylindrical basin, the western boundary 
current does not vary with radial position and, flows undiminished all the way to 
the outer rim of the tank, the current in the spherical geometry diminishes as it flows 
to lower latitudes (Fig. 6), dropping to zero at the equator. (Of course, if we assumed 
a concentrated source So at the pole larger than the internal distributed sink flux 
Q0 a2 (63 - 61), the excess would flow across the equator to feed the sector on the 
other side). 

The internal consistency of equations (3.1) and (3.3) is readily checked by evaluating 
the total zonal transport at 6 = 61 and showing it to be equal to the initial total 
western boundary current T w (0), i.e. 

f ~12 o hau (61) d~ : 20o a 2 (62 --  61) 

A somewhat different pattern of western boundary currents arises if we alter the 
situation in Fig. 6 only by transferring the concentrated source from the pole to the 
southwest corner of the sector at the equator (i.e. this could stem from a western 
boundary current crossing the equator from the southern side). We still assume 
that the source strength So just balances the distributed sink Q0 a 2 (62 - 41). 

If we now evaluate T w (~) from equation (3.2), remembering that there is no longer 
a concentrated source within the section being considered in Fig. 7, we obtain : 

Tw (~) : Qo a2 (42 - 61) (1 - 2 cos ~) (3.4) 

The interior flow pattern is still defined by (3.1) exactly as it was in Fig. 6, but the 
nature of the western boundary current is very different and is sketched in Fig. 8. 

The flux integrated over the surface area of  the basin 

= flf* Q a2sin .do dr. 
¢b x 

The flux across ~ in the interior of the ocean, away from the western boundary 
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A current o f  recirculated water equal to the source strength starts at the pole and 
flows toward the source just as in the cylindrical case (SvoMMEL et al., 1958), but  in 
the spherical geometry this current gradually diminishes to zero at ~ : 60 ° (30 ° 
north latitude). A nor thward current o f  equal strength starts at the equatorial source 

Fig. 8. Circulation pattern in meridionally bounded ocean with concentrated source S o (fed by 
western boundary current from below the equator) and a uniformly distributed sink Qo such that 

So = Oo a 2 (4'2 - '~1)" 

and also diminishes to zero at 30 ° nor th  latitude. (This feature is completely absent 
in the corresponding cylindrical situation). The zonal t ransport  out  o f  these two 
currents feeds exactly the same interior flow pattern as in Fig. 6. 

In the second paper o f  this series, we shall repreatedly make use o f  the above results 
in order to sketch idealized patterns o f  boundary  currents and interior circulation 
in various basins o f  the world ocean. 

(4) FURTHER ILLUSTRATIONS OF CIRCULATIONS IN MERIDIONALLY 
BOUNDED BASINS 

Applying the analytical method outlined in Section 3, we now state the results 
obtained for a few other basically interesting cases o f  source-sink distributions. 

(a) A simple form of  the function Q which avoids singular flows at the poles is 

Q = Q0s in"~cos~ ,  n ~  I (4.1) 

Thus  the half  o f  the basin nor th  o f  the equator  is a sink while the southern half  
is an equal source. So is taken as zero. 

The isobars are given by the disturbed height 

_ 2oJa2 Q0 sin" ~ cos a ~ .  (¢ - ~ )  (4.2) 
gh 

and the western boundary  current t ransport  by 

2 sin" 
Tw(O) = Qoa n - - - ~  [(n + 3) cos ~ - 1] .  ( ~  - ~1). (4.3) 
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The interior isobars and nature o f  the western boundary  current are sketched 
for the case n ----- 0 in Fig. 9. The nor th  and sou thbound  boundary  currents fall to 
zero at 0 = 54.7 °. Here the flow has a singularity at the poles. The singularity is 
eliminated when n ~ 1. For  larger values o f  n the flow is essentially similar to that 
sketched in Fig. 9 with isobars somewhat  more concentrated in mid-latitudes. 

(b) It  is interesting to examine the effect o f  a sloping bot tom,  taking h = ho sin ~. 
Here we must  go back to the continuity equation in the form of  (1.2). For  a uniformly 
distributed sink Q --  Qo and a concentrated source in the south, we obtain : 

u -  Q0acos 
h0 

v - -  Q0 a (¢ - ¢2) (1 - 3 sin2 o) 
ho 

_ Qo a 2 ~  (ff _ ~ )  cos ~ sin s o 
gho 

r w ( o )  = Qo az (~bs - -  ¢/'0 [cos 0 (1 + sin s 0) - -  1] (4.4) 

The isobars a n d w e s t e r n  boundary  transport  are sketched in Fig. 10. Compar ing  
with Fig. 6, we see that  the effect o f  the sloping bo t tom is to cause the isobars to intersect 
the 4'1 meridian at different latitudes instead o f  requiring a c o m m o n  intersection at 
the pole as in the case o f  uniform depth. It should also be noted that the southward 
flowing boundary  current first increases in intensity and then decreases instead o f  
showing a monotonic  decrease. 

Fig. 9. Circulation pattern for Q = Qocos ,~ 
with no concentrated sources. Note 

boundary current crossing equator. 

~t 

Fig. 10. Circulation pattern in meridionally 
bounded ocean with sloping bottom. 
h = h o sin v ~. Concentrated southern source 

and uniformly distributed sink. 

(c) In  any source-sink distribution in which Q becomes zero along a latitude 
circle, the interior geostrophic flow does not  cross this latitude circle, and the 
circulation in a basin is divided up in to  separate cells. As an illustration we take 

Q = - Q0 cos 20 (4.5) 



giving a distributed source in latitudes higher than 45 ° and a distributed sink in the 
belt between the 45 ° latitude circles. Since the source flux is smaller than the sink 
flux, we balance the flux by introducing concentrated sources So = ] Q0 aS (~2 - ~a) 
at each pole. In this case we obtain for a basin of  uniform depth : 

Q0a  2 c o s  3 o n - c o s  u - -  
h sin 

2Q0 a 
v - ( ~  - ~ z )  s i n  3 ~  

h 

Fig. 11. 

----- 2Q0 a ~ - gh o~ ((o - ~b2) cos 20* cos s0 

Tw (~) Q~ a2 ---- - - - -  (~b2 - -  fro cos ~ (3 - -  4 cos 2o*) 

So 
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(4.6) 

Circulation pattern divided into separate cells when Q = 0 a l o n g  a latitude circle. 
So---- ]O0 aS(4)2-ffl) ;  O = - Qoc°s2u a. 

The isobars  and  western b o u n d a r y  t ranspor t s  are sketched in Fig. l l ,  showing 
the cells into which the c i rculat ion is divided.  

(5) BASINS BOUNDED BY MERIDIANS 4)1, 4)2 AND A NORTHERN 
LATITUDE t~, (FIG. 12) 

F o r  any dis t r ibut ion  o f  Q, the expressions for u, v and  ~ are the same as before,  
except  now it will, in general ,  be necessary to a d d  a bounda ry  layer at bo th  ~ = ~i 
and  ~b = ~1. The expression for  T w (~) must  be changed because there is no loss f rom 
the sink defined nor th  o f  o* x ; 
thus 

Tw(~) = _ ( ¢,2ahu sin O d(~ - f ,2 ( o  Q a2 sin ° d~ d( ~ (5.1) 
d~l d~ 1 dox 

AS an example ,  we may  choose  Q = Q0, a constant .  Hence 

T w  (~) = Q,  a S (¢2 - ~ 3  (2 cos  ~ - cos  ~ )  (5.2) 
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The critical latitudes, where the western current reverses direction, are at 

o = c o s  -1 (½ c o s  Ol) 

~ 2 

P 

Fig. 12. Notation for sector Mth rind boundary at co-latitude 01. 

(5.3) 

In the limiting case where the latitude of the northern boundary approaches the 
pole (Ol ~ 0) the latitude of reversal of  the western boundary current is about 
(0 = 60 °) 30 ° N lat. 

In some actual applications an additional point source S O should be added in the 
basins, near the poles, to supply the material lost by the distributed sink. In this 
case we must add So to the equation on the r igh thand member. 

(6) COMPLETELY CLOSED BASIN BOUNDED BY MERIDIANS ~1, ~2 AND LATITUDE 
CIRCLES 01 , 02 (FIG. 13) 

Again, we take a distributed sink function Q = Q0. The quantities u, ~, T w (0) are 
the same as in the case of  Section 5, but, of  course, for a steady state there must be 
a source of water somewhere. We place it at the point ¢1, 02. Its intensity must be 
equal to that of  the distributed sink over the whole ocean area. 

f ~ 2 f %  a2 S o = j # l o o l Q  sinOdod¢=Qoa2(¢2--¢O(cosOl--cosOz) (6.1) 

The isobar pattern is given by 

_ 2Q0 a 2 co (¢2 - ¢) cos2 o (6.2) 
gh 

the pressure pattern being developed from the eastern boundary with zero zonal 
transport at ¢ = ¢2 as before. 

In Fig. 13 the isobar pattern according to (6.2) is drawn. It  is seen that boundary 
currents must be drawn at all except the eastern boundary. The western boundary 
current flows northward from the source, and across the equator, and is met in middle 
northern latitudes by a southward flowing western boundary current. For example, 
if we take the latitude of  the northern boundary of  the ocean 70°N, the latitude of 



152 HENRY STOMMEL and A. B. ARONS 

the reversal of  the western boundary current is 18.5°N (o = 81.5 °) from equation 
(5.3). 

If, in the configuration shown in Fig. 13 we now put another point source $1, at 
the north-western corner of  the basin, and assert that there is a distributed sink 
whose intensity integrated over the entire area of  the ocean is equal to the sum of  
the two point sources : S o + $1, we get a variety of  circulation patterns, depending 
on the relative strengths of  sources S o and $1. I f  they are equal, the flow is in two 

Fig. 13. Circulation pattern in sector 
bounded by meridians and latitude circles. 
Boundary currents will be present along 
north and south boundaries as well as along 
the western boundary. Single concentrated 

source. 

Fig. 14. Circulation pattern in sector of 
Fig. 13 with equal concentrated sources in 

each hemisphere. 

separate gyres with no flow across the equator (Fig. 14). I f  the sources are not equal 
there is a flow across the equator in the western boundary current (there is never 
transequatorial flow in the interior) from the basin with the larger source, the pattern 
then looking more like that shown in Fig. 13. The only difference in these patterns, 
as we vary the relative strength of So and $1 is in the latitude of reversal of  the western 
boundary current. 

(7) SOME COMMENTS ON THE VARIOUS BOUNDARY LAYERS 

The various boundary layers introduced in the preceding examples can be avoided, 
formally, by proper choice of  the sink function Q. Thus, all boundary currents on 
latitude circles can be avoided by choosing Q so that it approaches zero at the boundary. 
Similarly, western boundary currents can be avoided if we restrict Q (~, 4) to forms 
which satisfy the integral relation 

f ~£ Q (o, 4) d4 = 0  

where 42 and 41 are the longitudes of  the meridional boundaries of  the basin. In 
effect, these are the restrictions which GOLDSBROUGH imposes in his investigation. 
Such restrictions are, however, quite artificial from a physical point of view. Most 
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simple physical regimes in experiments, such as those in the rotating circular basin 
with parabolic depthlaw (STOMMEL et al., 1958) as well as geophysical or oceanographic 
situations, are certainly not bound to conform to such artificial restrictions. Thus, 
there is a need to take a rather broad view in choosing models with various forms 
of  Q, and this evidently requires introduction of appropriate boundary layers. 

(8) PARTIAL BARRIERS 

What  will the regime of  flow look like when there are meridional barriers which 
end abruptly at some latitude far from any other coast ? Let us return to the simple 
configuration originally drawn in Fig. 7, but now we put a long barrier along the 
longitude 4'  (41 < 4'  < 42) extending from the pole to colatitude o' but not beyond 
it (Fig. 5). 

We can make use of  the same kind of reasoning we used before to construct interior 
solutions in the open ocean portion. However it is clear that we can now have two 
western boundary currents along 4t and 4', with transports T w and T , / .  I f  upon 
calculation of the transport T w' along the partial barrier 4'  it is found that T w' =4= 0 
at o = a', then clearly the only resort is a zonal current (Z in Fig. 16) to connect 

J 

Fig. 15. Meridionally bounded sector 
(9~1, 9~2) with partial meridional barrier 

extending from pole to longitude if'. 

.A 

Fig. 16. Circulation pattern in sector with 
partial meridional barrier. Western 
boundary currents along ~1 and ~" are 

connected by zonal flow Z. 

the western boundary current on the barrier 4'  to that on the barrier 41" In this way 
continuity can be preserved. To see how this alters the picture of  the circulation we 
can compare Figs. 8 and 16. The former shows the pattern of  circulation for a basin, 
bounded by two meridians and the equator, filled by a source So at the equator, and 
emptied by a uniformly distributed sink over the whole oceanic area. In Fig. 16 a 
meridional barrier 4'  has been added part way down from the pole, and the mass 
flux into the eastern basin occurs partly as a zonal current toward the east. The fact 
that this zonal current can indeed ' round the co rne r '  to join the western boundary 
current has been demonstrated in rotating tank experiments by A. J. FALLER 
(private communication). Both north and south of  the zonal current there is an 
interior meridional component  of  flow which must join properly to the zonal current. 
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Therefore the zonal current is not strictly speaking a continuous current ; water is 
added from the south and thrown off to the north along its length, as the drawing 
of the isobars indicates. 
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